Magnifying glass icon Magnifying glass icon Close icon

The precise measurement of oxygen is important to know in several scenarios, including astronauts’ respiration, food safety and packaging, and for preventing blindness in newborn babies, among others. In 1940, the U.S. military sought a device that would measure the amount of oxygen in the air for use in airplanes and submarines. Linus C. Pauling creaed one that used two glass bulbs filled with air that were connected like a dumbbell and suspended on a thin quartz fiber near a magnet. Because of oxygen’s magnetic properties, the oxygen in the glass bulbs moved towards the magnet, which in turn twisted the bulbs. A photo cell measured the amount of rotation; the more the bulbs rotated, the more oxygen was in the air. A special mounting system was also created to protect the instrument from shocks and vibrations in planes and ships. Unfortunately, the process of making these models was very challenging and so the U.S. government looked to Dr. Arnold O. Beckman for help in manufacturing the instrument. Beckman used microscopically thin quartz fibers that were invisible to the naked eye. In order to work with them, a gum label was wet and put near the quartz fiber to locate it. Once the gum labels were on both ends of the fiber, it was easier to work with the fiber under a microscope. Beckman also built a small glass blowing machine to help create more consistently and accurately sized glass bulbs for the instrument. These innovations helped produce oxygen analyzers in a faster and more efficient way, delivering 100 per month to the Navy by the end of the war.

We can better understand the importance of the oxygen analyzer and how it works by learning more about magnetism in the following lesson plan.

Oxygen Analyzer Photo 2.JPG

AMBF Collection Area: Oxygen Analyzer

Grade: Middle School, recommended 7th-8th Grade

Subject Area: Science, English Language Arts

Duration: 1 hour

Lesson Objectives

  1. Students will understand that oxygen can be influenced by magnetic forces and that by measuring the effect of magnetism on a sample of air, one can determine the concentration of oxygen in the sample.
  2. Students will understand that there are different types of magnetic properties, ferromagnetism and paramagnetism.
  3. Students will use knowledge of the different types of magnetism to identify metal samples.

Learning Standards

Next Generation Science Standards:

MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces

MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact

Common Core State Standards English Language Arts:

CCSS.ELA-LITERACY.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

CCSS.ELA-LITERACY.W.8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content.

CCSS.ELA-LITERACY.RST.6-8.8 Distinguish among facts, reasoned judgment based on research findings, and speculation in a text.

3D Modeling

Click here to see three dimensional digital modeling of the oxygen analyzer.

Printable PDFs

Classroom Activities


● Iron Samples

● Aluminum Samples

● Bar Magnets

● Paperclips

  1. Warm-up Discussion: What is oxygen? What is air and how are they different? Why might it be important to measure the concentration of oxygen in the air? Are there negative consequences to too little oxygen? Too much oxygen?
  2. Pass out the student activity hand out on magnetism and ensure all groups have the required materials. Work through the activity in small groups or a class. Suggested comprehension and discussion questions following the activity:
  • What is the difference between paramagnetism and ferromagnetism?
  • How might we take advantage of the fact that oxygen is magnetic to measure the concentration of oxygen in a sample of air?

3. Watch the short video on the Beckman Oxygen Analyzer (available under Additional Resources).

4. Discuss the invention of the oxygen analyzer and some popular applications, namely use in submarines and incubation chambers.

5. As a whole class, discuss results and share as a class:

  • What surprised you today?
  • What is something new you learned?

Extension Ideas

● Have students split up into groups to research explore some important chemical reactions which require oxygen.

● Students divide into groups and explore at a deeper level applications of the oxygen analyzer and scenarios where oxygen concentration is critical, such as with: Submarines, spaceships, incubation chambers, and SCUBA tanks.

Additional Resources // Recursos adicionales

The following videos are intended as viewable resources only. Please do not attempt any of the experiments or demonstrations shown.

  • The first video provides background on the oxygen analyzer.
  • The second video demonstrates how an iron nail can be turned into a temprary magnet.
  • The third video demonstrates the magnetic properties of oxygen. Oxygen is cooled down to a low temperature until it liquifies, enabling its magnetic properties to be observed.


Realizar mediciones de oxígeno con precisión es de vital importancia para diversos campos y aplicaciones, entre ellos la respiración de astronautas, la seguridad y el envasado de alimentos, y la prevención de la ceguera en recién nacidos. En 1940, el ejército de los Estados Unidos solicitó al químico Linus C. Pauling la creación de un dispositivo que midiera la cantidad de oxígeno en el aire para aviones y submarinos. La máquina que creó Pauling empleaba dos bombillas de vidrio llenas de aire conectadas en forma de mancuerna y suspendidas sobre una fina fibra de cuarzo cerca de un imán. Debido a las propiedades magnéticas del oxígeno, el oxígeno en las bombillas de vidrio se movía hacia el imán, que a su vez hacía girar las bombillas. Una fotocélula medía la rotación: cuanto más giraban las bombillas, más oxígeno había en el aire. Pauling también creó un sistema de montaje especial para proteger el instrumento de golpes y vibraciones en aviones y embarcaciones. Desafortunadamente, armar estos modelos fue un gran desafío, por lo que el gobierno de los EE. UU. buscó la ayuda del Dr. Arnold O. Beckman para fabricar el instrumento. Beckman utilizó fibras de cuarzo microscópicamente delgadas que eran invisibles a simple vista. Para trabajar con ellas, se humedecía un identificador adhesivo y se colocaba cerca de la fibra de cuarzo para ubicarla. Una vez colocados los identificadores adhesivos en ambos extremos de la fibra, era más fácil trabajar con la fibra en un microscopio. Beckman también construyó una pequeña máquina de soplado de vidrio para ayudar a producir de forma consistente bombillas de vidrio de tamaño preciso para el instrumento. Estas innovaciones ayudaron en la fabricación de analizadores de oxígeno de forma más rápida y eficaz, e hicieron posible, para el final de la guerra, la entrega de 100 ejemplares por mes a la Armada británica.

Sources // Contributors

This lesson plan was developed using inspiration and some source material from here, here, and here. Thank you to the following contributors and content curators: Christopher Gear, Alison Mondrach, M. Ed., Scott Pawlowski, Kaerie Ray, Kelsey Talbot, Nicole Zawadzki, and Mariana Zechini.

Keywords: Beckman, learning resources, elearning, online, education, science, history, STEM, STEAM, teaching materials